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Abstract. The method of the reconstruction of local quantum operators in terms of the elements
of the quantum monodromy matrix is applied to the XXZ spin- 1

2 Heisenberg chain with integrable
boundary conditions.

1. Introduction

In the theory of quantum integrable models, the calculation of the spectrum and the correlation
functions are two main problems. The spectrum of the integrable model may be obtained by the
general method called the Bethe Ansatz and quantum inverse scattering method (QISM) [1–4].
But the calculation of the correlation functions is a very difficult problem in general situations.
For example, in the case of the Heisenberg spin chains [5], whose spectrum was solved
early [1, 6, 7], the first manageable expressions for its correlation functions were only given
in 1992, and later by Jimbo et al [8, 9], on the basis of the symmetry structure of the infinite
chain. The differential equations and determinant representation for its correlation functions
were given in 1994 and later by Korepin et al [10–12] based on the algebra Bethe Ansatz
method. Recently, the explicit reconstruction of any local spin operator at any site of the chain
in terms of the elements of the quantum monodromy matrix was solved for this model by
Kitanine et al [13]. The explicit solution has also been obtained for a large class of lattice
quantum integrable models [14,15]. This put forward an approach to calculate the correlation
functions. It is well known that in the frame of QISM, the Bethe eigenstates are created by the
successive action of the elements of the monodromy matrix B(λk) (or C(λk)), which are non-
local operators. So in the calculation of correlation functions, one has to deal with two types
of operators: local operators σ i

n and non-local operators B(λk) (or C(λk)). The commutation
relations between these two types of operators are generally complicated. This makes it difficult
to calculate the correlation functions. Once the local operators are reconstructed in the terms
of creation and annihilation operators, one only needs to deal with non-local operators, whose
commutation relations obey the well known Yang–Baxter equation.

On the other hand, since the systematical treatment of the independent boundary conditions
for integrable quantum systems was proposed by Sklyanin [16], many integrable models
have been discussed for the case of open boundary conditions [17–21]. When the boundary
conditions on the finite interval are compatible with integrability, the monodromy matrix can
be constructed and the algebra Bethe Ansatz can be applied to diagonalizing the quantum
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monodromy matrix. In computing the correlation function, any local operator at any site is
also expected to be reconstructed from the elements of the monodromy matrix. In this paper,
we apply the method proposed in [13–15] to the partially anisotropic XXZ spin- 1

2 chain with
integrable boundary.

The paper is organized as follows. In section 2, the main features of the boundary XXZ
spin- 1

2 model are listed and the necessary notation is introduced. In section 3, the method
of reconstructing local quantum operators is applied to this model and the main result (26) is
obtained. In the last section, some possible generalizations to other lattice quantum integrable
models are discussed.

2. Boundary XXZ spin- 1
2 chain

In this section, let us briefly recall some of the main results of the boundary XXZ spin- 1
2

chain [16], which will be used in the next section.
The Hamiltonian of the model reads

H =
N−1∑
n=1

(σ 1
n σ

1
n+1 + σ 2

n σ
2
n+1 + cosh η · σ 3

n σ
3
n+1) + sinh η · (coth ξ− · σ 3

1 + coth ξ+ · σ 3
N). (1)

Here, σ i
n =

N︷ ︸︸ ︷
· · · 1 ⊗ σ i ⊗ 1 ⊗ · · ·

nth
, σ i(i = 1, 2, 3), are Pauli matrices. The R matrix, which

plays an important role in QISM, is given by

R(u) =




a(u)

b(u) c(u)

c(u) b(u)

a(u)


 (2)

where a(u) = sinh(u + η), b(u) = sinh(u), c(u) = sinh(η). The R matrix (2) satisfies the
Yang–Baxter equation,

R12(u1 − u2) · R13(u1 − u3) · R23(u2 − u3) = R23(u2 − u3) · R13(u1 − u3) · R12(u1 − u2)

(3)

the conditions of unitarity

R12(u) · R12(−u) = ρ(u) = − sinh(u + η) sinh(u − η) (4)

and crossing unitarity

R
t1
12(u) · Rt1

12(−u − 2η) = ρ̃(u) = ρ(u + η). (5)

In the case of bulk, define

Ti1i2...iN (u) = LiN (u) . . . Li2(u)Li1(u). (6)

The monodromy matrix is constructed as T (u) = T12...N (u). Ln(u) are some representations
of the associative algebra connected with (2):

R12(u1 − u2)L
(1)
n (u1)L

(2)
n (u2) = L(2)

n (u2)L
(1)
n (u1)R12(u1 − u2). (7)

Here, L(1)
n (u) = Ln(u) ⊗ 1, L(2)

n (u) = 1 ⊗ Ln(u), and Ln(u) act on the space V ⊗ Wn. The
V is auxiliary space C2 and Wn the quantum spaces at the site n. Due to (6), (7), Ti1i2...iN (u)

satisfy the same commutation relation as Ln(u) do (7). When Wi are isomorphic to V , Ln(u)

may be realized as a 2 × 2 matrix in auxiliary space V ,

Ln(u) ≡ R0n(u − un − 1
2η) =

(
L11

n (u) L12
n (u)

L21
n (u) L22

n (u)

)
(8)
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and the elements L
ij
n read as

L11
n = sinh(u − un) coth

(η

2

)
+ coth(u − un) sinh

(η

2

)
σ 3
n

L12
n = σ−

n sinh(η) L21
n = σ +

n sinh(η)

L22
n = sinh(u − un) coth

(η

2

)
− coth(u − un) sinh

(η

2

)
σ 3
n

(9)

where σ±
n = 1

2 (σ
1
n ± iσ 2

n ), and un is the fixed parameter dependent on the site n. For the
XXZ spin- 1

2 chain, all parameters un are equal to − 1
2η (homogeneous case). In this paper,

all discussions relate to the inhomogeneous case; but then letting un = − 1
2η one obtains the

results for the homogeneous case. Similarly, T (u) may be also expressed as a 2 × 2 matrix in
auxiliary space V ,

T (u) =
(
A(u) B(u)

C(u) D(u)

)
. (10)

A,B,C and D are linear operators acting on quantum space
∏N

i=1 ⊗Wi . The transfer matrix
is defined as

t (u) = tr0 T (u) = A(u) + D(u)

where, tr0 means the trace in auxiliary space. In the frame of QISM, diagonalizing the
Hamiltonian is equivalent to calculating the eigenvalue of the transfer matrix and constructing
the eigenvectors

∏
i B(vi)w+. Here vi must satisfy the set of equations called Bethe equations,

and the highest vector w+ satisfy

A(u)w+ = δ+(u)w+ D(u)w+ = δ−(u)w+ C(u)w+ = 0 (11)

where δ+(u) = ∏N
n=1 sinh(u−un + 1

2η), δ−(u) = ∏N
n=1 sinh(u−un− 1

2η). When u = un + 1
2η,

from (8) one knows thatLn(u) reduce to sinh η·P0n, and t (un+ 1
2η) is an invertible shift operator

acting on Ti1i2...iN (u) as [13, 14]

t (un + 1
2η) · Tn...N1...n−1(u) = Tn+1...N1...n(u) · t (un + 1

2η). (12)

In the case of integrable boundary conditions, besidesR matrix (2), the boundary scattering
matrices K±(u) are necessary to keep the integrability of the model,

K+(u) = K(u + 1
2η, ξ+) K−(u) = K(u − 1

2η, ξ−)

K(u, ξ) =
(

sinh(u + ξ)

− sinh(u − ξ)

)
.

(13)

K±(u) satisfy the boundary Yang–Baxter equations [16],

R12(u1 − u2) · K1
−(u1) · R12(u1 + u2 − η) · K2

−(u2)

= K2
−(u2) · R12(u1 + u2 − η) · K1

−(u1) · R12(u1 − u2) (14)

R12(−u1 + u2) · K1
+(u1)

t1 · R12(−u1 − u2 − η) · K2
+(u2)

t2

= K2
+(u2)

t2 · R12(−u1 − u2 − η) · K1
+(u1)

t1 · R12(−u1 + u2) (15)

K1
±(u1) = K±(u1)⊗ 1 and K2

±(u2) = 1 ⊗K±(u2). The monodromy matrix is defined as [16]

Ut(u) = T t (u) · Kt
+(u) · σ 2 · T (−u) · σ 2 =

( A(u) C(u)
B(u) D(u)

)
. (16)

Utilizing (7), (15), U(u) can be proved to satisfy (15) as K+(u) do. This results in the
commutation relations between A(u), B(u), C(u) and D(u). The transfer matrix is defined as

τ(u) = tr0 U(u) · K−(u)

= sinh(u − 1
2η + ξ−)A(u) − sinh(u − 1

2η − ξ−)D(u). (17)
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The eigenvectors are constructed as

|v1 . . . vM〉 = B(v1) . . .B(vM)w+. (18)

vi satisfy a set of equations called Bethe equations. The highest vectors of T (u), w+ are also
those of U(u):

A(u)w+ = &+(u)w+ D(u)w+ = &−(u)w+ C(u)w+ = 0. (19)

Due to (10), (13) and (16), the terms of the matrix U(u) can be written as

A(u) = sinh(u + 1
2η + ξ+)A(u)D(−u) + sinh(u + 1

2η − ξ+)C(u)B(−u)

B(u) = sinh(u + 1
2η + ξ+)B(u)D(−u) + sinh(u + 1

2η − ξ+)D(u)B(−u)

C(u) = − sinh(u + 1
2η + ξ+)A(u)C(−u) − sinh(u + 1

2η − ξ+)C(u)A(−u)

D(u) = − sinh(u + 1
2η + ξ+)B(u)C(−u) − sinh(u + 1

2η − ξ+)D(u)A(−u).

(20)

The eigenvalues of A(u) and D(u) can be expressed in those of A(u) and D(u) as

&+(u) = 1

sinh(2u)
{sinh(2u + η) sinh(u − 1

2η + ξ+)δ+(u)δ−(−u)

+ sinh(η) sinh(u + 1
2η − ξ+)δ+(−u)δ−(u)} (21)

&−(u) = − sinh(u + 1
2η − ξ+)δ+(−u)δ−(u). (22)

3. Reconstruction of local quantum operators

Here reconstruction of quantum operators means reconstructing the local spin operators σ±
n

and σ z
n at a given site n of the chain in terms of the matrix elements A, B, C and D of the

monodromy matrix U(u). Instead of σ±
n and σ z

n , in the following we will consider the general
operators E

ij
n , i, j ∈ {1, 2}, acting on the local quantum space Wn � C2 at site n as the 2 × 2

matrix, (Eij
n )kl = δikδ

j

l , k, l ∈ {1, 2}.
Firstly, let us define

Ut
i1...iN

(u) = T t
i1...iN

(u) · Kt
+(u) · σ 2 · Ti1...iN (−u) · σ 2. (23)

It is obvious that U12...N (u) = U(u). Owing to the fact that t (un + 1
2η) is an invertible

shift operator acting on quantum space
∏N

i=1 ⊗Wi , one can prove that t (un + 1
2η) act on

Ut
n...N1...n−1(u) as

t (un + 1
2η) · Ut

n...N1...n−1(u)

= t (un + 1
2η) · T t

n...N1...n−1(u) · Kt
+(u) · σ 2 · Tn...N1...n−1(−u) · σ 2. (24)

Noting that superscript t means transpose in auxiliary space and using equation (12), one has

(24) = [t (un + 1
2η) · Tn...N1...n−1(u)]

t · Kt
+(u) · σ 2 · Tn...N1...n−1(−u) · σ 2

= T t
n+1...N1...n(u) · Kt

+(u) · σ 2 · t (un + 1
2η) · Tn...N1...n−1(−u) · σ 2

= T t
n+1...N1...n(u) · Kt

+(u) · σ 2 · Tn+1...N1...n(−u) · σ 2 · t (un + 1
2η)

= Ut
n+1...N1...n(u) · t (un + 1

2η). (25)

So,
∏n−1

i=1 t (ui + 1
2η) · Ut(u) = Ut

n...N1...n−1(u) · ∏n−1
i=1 t (ui + 1

2η). Then one has the following
proposition.
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Proposition 1. An operator E
ij
n ∈ End(Wn) in a given site n of the chain can be expressed in

the following way:

Eij
n =

n−1∏
i=1

t (ui + 1
2η) · tr0[U(un + 1

2η) · Eij

0 · K−(un + 1
2η)]τ(un + 1

2η)
−1

( n−1∏
i=1

t (ui + 1
2η)

)−1

(26)

where E
ij

0 are matrices acting on auxiliary space as E
ij
n on n-site quantum space.

Proof. Because E
ij

0 commute with t (ui + 1
2η),

n−1∏
i=1

t (ui + 1
2η) · tr0[U(un + 1

2η) · Eij

0 · K−(un + 1
2η)]

=
n−1∏
i=1

t (ui + 1
2η) · tr0[Eji

0 · Ut(un + 1
2η) · Kt

−(un + 1
2η)]

= tr0

[
E

ji

0 ·
n−1∏
i=1

t (ui + 1
2η) · Ut(un + 1

2η) · Kt
−(un + 1

2η)

]

= tr0

[
E

ji

0 · Ut
n...N1...n−1(un + 1

2η) ·
n−1∏
i=1

t (ui + 1
2η) · Kt

−(un + 1
2η)

]
. (27)

Note that Lt
n(un + 1

2η) = sinh η · P t
0n, which act on E

ji

0 as

E
ji

0 · Lt
n(un + 1

2η) = sinh η · (P0n · Eij

0 )t = sinh η · (Eij
n · P0n)

t = Eij
n · Lt

n(un + 1
2η). (28)

(6), (23) and (28) result in

E
ji

0 · Ut
n...N1...n−1(un + 1

2η) = Eij
n · Ut

n...N1...n−1(un + 1
2η). (29)

Owing to (28), (29), one has

(27) = tr0

[
Eij

n · Ut
n...N1...n−1(un + 1

2η) ·
n−1∏
i=1

t (ui + 1
2η)K

t
−(un + 1

2η)

]

= Eij
n · tr0

[
Ut

n...N1...n−1(un + 1
2η) ·

n−1∏
i=1

t (ui + 1
2η)K

t
−(un + 1

2η)

]

= Eij
n · tr0

[ n−1∏
i=1

t (ui + 1
2η) · Ut(un + 1

2η) · Kt
−(un + 1

2η)

]

= Eij
n ·

n−1∏
i=1

t (ui + 1
2η) · τ(un + 1

2η). (30)

Multiply both sides of (30) by (
∏n−1

i=1 t (ui + 1
2η) · τ(un + 1

2η))
−1 from the right, and one obtains

the final result. In the homogeneous case, all spectral parameters un limit to − 1
2η, we have the

following explicit expressions:

σ z
n = [A(0) + D(0)]n−1[sinh(ξ− − 1

2η)A(0) − sinh(ξ− + 1
2η)D(0)]

×[A(0) + D(0)]−1[A(0) + D(0)]−n+1

σ +
n = [A(0) + D(0)]n−1[sinh(ξ− + 1

2η)C(0)][A(0) + D(0)]−1[A(0) + D(0)]−n+1

σ−
n = [A(0) + D(0)]n−1[sinh(ξ− − 1

2η)B(0)][A(0) + D(0)]−1[A(0) + D(0)]−n+1.

(31)

�
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4. Discussion

In this paper, we have reconstructed the local spin operators at any site in terms of elements of
the monodromy matrix for the boundary XXZ spin- 1

2 model, and obtained the main result (26).
Here, the basis of derivation is that the quantum Lax operator Ln(u) reduces to the permutation
operators Pon when u = un + 1

2η. Hence, as in the case of periodic boundary conditions, the
result may be applied to other lattice models and fused lattice models with integrable boundary
conditions as has been done for periodic boundary conditions. In essence, there is no difficulty
in dealing with these models, except that fusion in auxiliary space is necessary to make the
auxiliary space isomorphic to local quantum space. Finally, it is interesting to compare
our main results (26) with the analogous formulae in [13–15]. Because the shift operator
is constructed from the transfer matrix, the right-hand side of the formula in [13–15] only
involves the elements of the monodromy matrix. So it may be used immediately in calculating
the correlation function. But in the case of the boundary, the shift operator is constructed
from the bulk transfer matrix. Two types of operators, A(D) and A(B, C,D), appear in (26).
A(B, C,D) are the elements of the monodromy matrix, and A(D) are the elements of the
bulk monodromy matrix. Although these two types of operators have the common highest
vector w+, the algebraic Bethe Ansatz states of the open chain are not eigenfunction of the
shift operators (A + D). This makes it difficult to calculate the correlation function using (26)
immediately. One must know how to express the elements of the shift operator in that of the
monodromy matrix. It appears difficult to solve this problem, although one can express the
elements of the monodromy matrix in that of the bulk monodromy matrix from (20).
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